
Towards Reliable Infrastructure as Code

Daniel Sokolowski

University of St. Gallen, Switzerland

daniel.sokolowski@unisg.ch

0000-0003-2911-8304

Guido Salvaneschi

University of St. Gallen, Switzerland

guido.salvaneschi@unisg.ch

0000-0002-9324-8894

Abstract—Modern Infrastructure as Code (IaC) programs are
increasingly complex and much closer to traditional software
than to simple configuration scripts. Their reliability is crucial
because their failure prevents the deployment of applications,
and incorrect behavior can introduce malfunction and severe
security issues. Yet, software engineering tools to develop reliable
programs, such as testing and verification, are barely used
in IaC. In fact, we observed that developers mainly rely on
integration testing, a slow and expensive practice that can
increase confidence in end-to-end functionality but is infeasible
to systematically test IaC programs in various configurations—
which is required to ensure robustness. On the other hand, fast
testing techniques, such as unit testing, are cumbersome with
IaC programs because, today, they require significant coding
overhead while only providing limited confidence.

To solve this issue, we envision the automated testing tool
ProTI, reducing the manual overhead and boosting confidence in
the test results. ProTI embraces modern unit testing techniques
to test IaC programs in many different configurations. Out of
the box, ProTI is a fuzzer for Pulumi TypeScript IaC programs,
randomly testing the program in many different configurations
for termination, configuration correctness, and existing policy
compliance. Then developers can add specifications to their
program to guide random-based value generation, test additional
properties, and add further mocking, making ProTI a property-
based testing tool. Lastly, we aim at automatically verifying IaC-
specific properties, e.g., access paths between resources.

Index Terms—Infrastructure as Code, Cloud Engineering,
Fuzzing, Property-based Testing, Verification

I. INTRODUCTION

The setup of modern cloud applications is increasingly

complex. Modern applications often comprise many small

components, e.g., serverless functions, microservices, smaller

databases, and blob storage, moving inherent complexity from

inside big monolithic apps to the composition of these smaller

components. This complexity has to be tackled by modern

Infrastructure as Code (IaC) solutions, which are used to

automate the applications’ deployment. In IaC, developers

configure systems by implementing programs that are sim-

ilar to traditional software and much more complex than

configuration scripts. This trend is likely to continue. For

instance, current research and visions treat IaC programs

already as long-running processes—like services in traditional

software—instead of their common limitation today to be

one-off tasks, which get executed over and over, e.g., by a

CI/CD pipeline [1]. This idea enables automated coordina-

tion across IaC deployments [2] and implementing—not only

configuring—resource orchestrators in IaC programs [3], solv-

ing the problem that today, there is no holistic view on static

deployment configurations and their dynamic behavior [4].

With the growing complexity of IaC programs, their relia-

bility is an increasingly important concern. Best case, faulty

IaC programs do not deploy an application. Worst case,

the faulty IaC program deploys the application such that

it works correctly, but the error causes an insecure setup

with vulnerabilities. Colloquially, reliable systems “just work.”

This aligns with the definition of Meyer [5] that we use in

this paper: Reliability is a more general term encompassing

correctness and robustness. Correctness describes that the

program performs tasks as specified. Robustness describes that

the program reacts appropriately to abnormal conditions. IaC

should satisfy both—work as intended, even in a changed

environment—and the developers have to achieve it.

Previous research on the reliability of IaC is limited to con-

figuration as code solutions like Ansible, Chef, and Puppet [6],

[7], [8], [9]. Also, in practice, tool support for developing

modern IaC programs is limited, and developers lack quick

and thorough feedback on the reliability of their IaC programs.

In this paper, we envision filling this gap.

Section II highlights the lack of developer tooling for

reliable IaC programs. Section III outlines our vision of ProTI,

a tool for the semi-automated testing of IaC programs, making

modern fuzzing and property-based testing techniques acces-

sible to IaC developers. Finally, Section IV adds automated

verification to ProTI, and Section V concludes.

II. MODERN INFRASTRUCTUR AS CODE SOLUTIONS AND

THE RELIABILITY TOOLING ISSUE

The core abstraction of declarative IaC solutions is the

directed, acyclic resource graph [10]. Each node is a re-

source, and arcs are dependencies between them. In re-

cent, modern IaC solutions, i.e., Pulumi [11], Amazon Web

Services (AWS) Cloud Development Kit (CDK) [12], and

CDK for Terraform (CDKTF) [13], which are the focus of

our research and this paper, such resource graphs are not

defined in JSON, YAML, or similar DSLs, but as programs

in (imperative) general-purpose programming languages, e.g.,

TypeScript, Python, or Java.

Listing 1 is an example IaC program written in Pulumi

TypeScript. While this example is relatively trivial and tiny

compared to realistic IaC programs, it suffices to illustrate

our ideas in this paper. The program deploys a static website

on AWS S3 by describing the resource graph in Figure 1.

website
«aws.s3.Bucket»

index
«aws.s3.BucketObject»

policy
«aws.s3.BucketPolicy»

Fig. 1. Resource graph of a static website on AWS S3 described by Listing 1.

Listing 1
PULUMI TYPESCRIPT IAC PROGRAM OF A STATIC WEBSITE ON AWS S3.

1 import * as aws from "@pulumi/aws";

2
3 const bucket = new aws.s3.Bucket("website", {

4 website: { indexDocument: "index.html" }

5 });

6 const index = new aws.s3.BucketObject("index", {

7 bucket: bucket,

8 key: "index.html",

9 contentType: "text/html; charset=utf-8",

10 content: `<!DOCTYPE html>Hello World!`

11 });

12 new aws.s3.BucketPolicy("policy", {

13 bucket: bucket.bucket,

14 policy: bucket.arn.apply(bucketArn => ({

15 Version: "2012-10-17",

16 Statement: [{

17 Effect: "Allow",

18 Principal: "*",

19 Action: ["s3:GetObject"],

20 Resource: [`${bucketArn}/*`]

21 }]}))});

22
23 export const url = bucket.websiteEndpoint;

Object instantiation defines resources. Lines 3 to 5 define the

S3 bucket, Lines 6 to 11 the static HTML document in it, and

Lines 12 to 21 configure the access policy that grants public

access from the Internet. Both the document and the policy

reference the bucket which defines the dependency arcs.

A bug in Listing 1 may cause a crash such that some or

all resources are not deployed and the website does not work.

However, even without crashing, an error in the policy could

cause the webpage is not accessible from the Internet. Vice

versa, if the bucket would host sensitive data, e.g., invoices

with customers’ data, a faulty policy could permit public

access, posing a severe data breach.

Testing and verification are traditional software engineering

techniques to improve program reliability. To our knowledge,

verification has not yet been applied to modern IaC programs.

In contrast, various testing techniques are available, i.e., unit

testing, dry running, integration testing, and end-to-end testing.

Unit testing can provide fast feedback during development.

The other techniques either rely on deploying the infrastructure

in every test run—which is slow and expensive—or can only

execute parts of the program. Yet, we observed that unit testing

is barely used for IaC programs, and developers instead seem

to rely on slower, more expensive integration testing.

We conjecture that today’s unit testing for IaC programs is

(a) too cumbersome and (b) generates too less confidence in

the program’s reliability. Unit testing is cumbersome because

it requires mocking all side effects. And modern IaC programs

are based on side effects, e.g., in Listing 1 all three resource

objects would need to be mocked. By default, each mock

either does not provide value because it does not perform

any checks or value generation, or it is a significant coding

effort, which is cumbersome and error-prone. Further, standard

example-based testing is not thorough enough. It can only

provide confidence that the program works correctly for a

single configuration. Integration testing methods also test only

a single configuration per test run. However, in this case, it is

at least ensured that the tested example is realistic.

We argue that testing can only provide confidence regarding

a program’s robustness when it is sufficiently fast such that

many different configurations are tested—ideally, covering all

relevant cases. This is not possible with integration testing

due to time and cost, but it is feasible for unit testing. Thus,

it must become easy to unit test IaC programs, enabling auto-

mated random testing techniques (i.e., fuzzing and property-

based testing), generating quick and thorough feedback, and

therefore confidence in the reliability of IaC programs.

III. QUICK AND THOROUGH IAC UNIT TESTING

To achieve quick and thorough IaC unit testing, we propose

the design of ProTI. It will automate the tedious mocking

of resources to simplify unit testing IaC programs. Further,

it will combine state-of-the-art random testing techniques,

specializing them for IaC programs. In summary, ProTI will

be a fuzzer and a property-based testing tool for IaC programs.

A. Fuzz Testing with ProTI

Fuzz testing (fuzzing) refers to techniques where whole

programs are tested with many randomly generated input

configurations to find bugs [14], [15]. The fewer resources

a single test run requires, i.e., time and compute, the more

test runs are possible. Therefore, fuzzing is only suitable for

IaC program unit testing—not for integration testing, where

a single test run takes at least tens of seconds and can

realistically take up to multiple hours.

Fuzzing IaC programs with ProTI based on whole-program

unit tests requires mocking, which is problematic (cf. Sec-

tion II). However, based on the type definitions of the resource

classes, ProTI can automate their mocking. Specifically, the

constructors shall check whether the provided configuration

values satisfy the expected format. Further, all outputs, i.e.,

the properties and functions of resources, can be replaced

with random-based value generators for the respective type.

For instance, in Listing 1, ProTI will automatically mock

the policy definition in Lines 12 to 21, checking whether the

provided configuration is valid in each test run. The accessed

properties bucket and arn in Lines 13 and 14 return values

from value generators of the properties’ types.

With these features, ProTI can quickly run the IaC program

many times without any adjustments or input from the devel-

oper. The initial implementation of ProTI will focus on Pulumi

TypeScript. In each run, its random-based value generators will

provide different values, hopefully covering many edge cases

early and quickly finding errors regarding execution, termina-

tion, and resource configuration—if present. Value generation

strategies will be at the core of our evaluation, which shall

be performed on public open-source Pulumi TypeScript pro-

grams from GitHub. Besides naı̈ve uniformly-distributed and

biased random value generation, literature discussed feedback-

directed [16], search-based [17], coverage-guided [14], and

combinatorial-coverage-guided [18] strategies.

B. Property-based Testing with ProTI

Property-based testing (PBT) [19], pioneered by

QuickCheck [20], is another random testing technique.

In contrast to fuzzing, the program is not treated as an

opaque box, but developers leverage application domain

knowledge to (a) guide the value generation and (b) check

against application-specific properties specified as a predicate

on the test outcomes. ProTI will seamlessly blend this idea

into the above-presented fuzzer by providing developers

functions, which they can use to (a) provide more specific

value generators and (b) define custom properties to check

during each test run.

ProTI will offer a gen().with() syntax to provide cus-

tom value generators. It can be applied to any property or

function X by replacing it with gen(X).with(Y), where Y

defines a value generator, which is defined like arbitraries

in the property-based testing framework fast-check [21].

E.g., in Listing 1, bucket.arn (Line 14) could be replaced

with gen(bucket.arn).with(base64().map(s => `arn:aws:

s3:::${s.replace(/[+/]/g, '-')}`)) so that realistic ARN

strings are generated instead of strings of any format during

testing. In non-ProTI execution, e.g., production, the statement

preserves the original semantics of bucket.arn.

Custom property checks will be added with widely-known

expect() assertion syntax as available, e.g., in Jest [22],

providing user-friendly short hands while supporting cus-

tom predicates to define whether an observed value is

valid. E.g., `${bucketArn}/*` in Line 20 could be re-

placed with expect(`${bucketArn}/*`).toMatch(/ˆarn:aws

:s3:::[a-zA-Z0-9-]+$/) to ensure all observed values are

valid ARNs. To preserve the programs’ semantics, the syntax

will return the value provided as a parameter in expect() and

ignore defined assertion in regular, non-ProTI execution.

As IaC programs may use all TypeScript features, including

slow, expensive, or only-for-production code, ProTI will also

provide widely-known mock functions syntax. Developers can

use it to replace, e.g., to fasten up, parts of their code or check

further properties. Functions can be mocked by using a spy()

.with() syntax, e.g., fn = spy(fn).with(mock). Such mocks

will be ignored in non-ProTI executions.

IV. AUTOMATED VERIFICATION

Testing only shows the presence of errors. In contrast,

verification can provide ultimate confidence that a program

is reliable, but the required effort is often too high. Yet,

automatically verifying certain domain-specific properties can

be (a) technically feasible and (b) critical enough to justify

the automation effort. We now outline how ProTI could be

extended to provide IaC-specific property verification.

TABLE I
IAC SHARED RESPONSIBILITY MODEL.

Responsi-

bilities

IaC Solution
Developers

Cloud Resource
Providers

Developers

IaC Today IaC Solution Resource Plugins IaC Programs

Automated

Verification

Verification Models
and Automation

Specifications
to Verify

To reduce the effort of verification, we will limit the scope

to specific properties, making it amenable to full automation.

We plan to leverage the shared responsibility model shown

in Table I. The verification model and automation technique

shall be part of the resource plugins, which are developed by

the resource providers and the IaC solution developers and

communities. Developers only add specifications to their IaC

programs, which are automatically verified. This centralizes

the tedious, resource-intensive task of developing the verifi-

cation model and automation, making them usable with low

effort for all customers of the resource providers.

Initial evidence that such a model can work is au-

tomated verification at AWS [23], [24]. AWS developed

fully-automated verification services. AWS Tiros analyzes

network configurations regarding reachability queries [25].

AWS Zelkova verifies access configured by AWS IAM

role-based access policies [26]. Both services drive fea-

tures in various services, including AWS Config [26], Ama-

zon Inspector [25], and AWS S3 [26], [27]. However,

these verification techniques are currently only used to

verify already set-up cloud resources. We argue that IaC

programs encode all required information for such veri-

fication. E.g., in Listing 1, an accessibility query could

be added like new proti.Accessibility('website-public',

{ source: proti.internet, target: index }) specifying

and triggering verification that the index document is acces-

sible from the Internet. Such constraints could be verified

offline—before deployment—based on the target configuration

state in IaC programs if the resource providers automate the

verification similar to Tiros and Zelkova, e.g., using SMT

solving with Z3 [28] and MonoSAT [29].

V. CONCLUSION

Modern IaC programs have become similar to traditional

software. This trend is driven by increasingly complex de-

ployments and novel IaC solutions. However, developers lack

support for writing reliable IaC programs. To fill this gap,

we propose the automated unit-testing technique ProTI that

will combine fuzzing, property-based testing, and automated

verification. ProTI will provide quick and thorough feedback,

enabling rapid development with frequent feedback cycles

while providing high confidence in IaC programs’ reliability.

ACKNOWLEDGEMENTS

This work has been co-funded by the Swiss National

Science Foundation (SNSF, No. 200429) and by the University

of St. Gallen (GFF, No. 1025525 and No. 1025526).

REFERENCES

[1] D. Sokolowski, “Infrastructure as Code for Dynamic Deployments,” in
Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,

ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022,
A. Roychoudhury, C. Cadar, and M. Kim, Eds. ACM, 2022, pp. 1775–
1779. [Online]. Available: https://doi.org/10.1145/3540250.3558912

[2] D. Sokolowski, P. Weisenburger, and G. Salvaneschi, “Automating
Serverless Deployments for DevOps Organizations,” in ESEC/FSE

’21: 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, Athens,

Greece, August 23-28, 2021, D. Spinellis, G. Gousios, M. Chechik,
and M. D. Penta, Eds. ACM, 2021, pp. 57–69. [Online]. Available:
https://doi.org/10.1145/3468264.3468575

[3] D. Weerasiri, M. C. Barukh, B. Benatallah, Q. Z. Sheng, and
R. Ranjan, “A Taxonomy and Survey of Cloud Resource Orchestration
Techniques,” ACM Comput. Surv., vol. 50, no. 2, pp. 26:1–26:41, 2017.
[Online]. Available: https://doi.org/10.1145/3054177

[4] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba,
“Adoption, Support, and Challenges of Infrastructure-as-Code: Insights
from Industry,” in 2019 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2019, Cleveland, OH, USA,

September 29 - October 4, 2019. IEEE, 2019, pp. 580–589. [Online].
Available: https://doi.org/10.1109/ICSME.2019.00092

[5] B. Meyer, Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[6] S. D. Palma, D. D. Nucci, F. Palomba, and D. A. Tamburri,
“Within-Project Defect Prediction of Infrastructure-as-Code Using
Product and Process Metrics,” IEEE Trans. Software Eng., vol. 48,
no. 6, pp. 2086–2104, 2022. [Online]. Available: https://doi.org/10.
1109/TSE.2021.3051492

[7] I. Kumara, M. Garriga, A. U. Romeu, D. D. Nucci, F. Palomba,
D. A. Tamburri, and W. van den Heuvel, “The Do’s and Don’ts
of Infrastructure Code: A Systematic Gray Literature Review,” Inf.

Softw. Technol., vol. 137, p. 106593, 2021. [Online]. Available:
https://doi.org/10.1016/j.infsof.2021.106593

[8] R. Opdebeeck, A. Zerouali, and C. D. Roover, “Smelly Variables
in Ansible Infrastructure Code: Detection, Prevalence, and Lifetime,”
in 19th IEEE/ACM International Conference on Mining Software

Repositories, MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022.
ACM, 2022, pp. 61–72. [Online]. Available: https://doi.org/10.1145/
3524842.3527964

[9] A. Rahman, M. R. Rahman, C. Parnin, and L. A. Williams, “Security
Smells in Ansible and Chef Scripts: A Replication Study,” ACM Trans.

Softw. Eng. Methodol., vol. 30, no. 1, pp. 3:1–3:31, 2021. [Online].
Available: https://doi.org/10.1145/3408897

[10] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann,
K. Saatkamp, and J. Soldani, “The Essential Deployment Metamodel:
A Systematic Review of Deployment Automation Technologies,” SICS

Softw.-Intensive Cyber Phys. Syst., vol. 35, no. 1-2, pp. 63–75, 2020.
[Online]. Available: https://doi.org/10.1007/s00450-019-00412-x

[11] Pulumi, “Pulumi: Universal Infrastructure as Code,” 2022, https://github.
com/pulumi/pulumi (Accessed: 2022-07-12).

[12] Amazon Web Services, “AWS Cloud Development Kit,” 2022, https:
//aws.amazon.com/cdk/ (Accessed: 2022-07-12).

[13] HashiCorp, “CDK for Terraform,” 2022, https://www.terraform.io/cdktf
(Accessed: 2022-07-12).

[14] J. Li, B. Zhao, and C. Zhang, “Fuzzing: A Survey,” Cybersecur.,
vol. 1, no. 1, p. 6, 2018. [Online]. Available: https://doi.org/10.1186/
s42400-018-0002-y

[15] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, and C. Holler,
“Fuzzing: Breaking Things with Random Inputs,” in The Fuzzing

Book. CISPA Helmholtz Center for Information Security, 2022,
retrieved 2022-07-25 12:07:43+02:00. [Online]. Available: https:
//www.fuzzingbook.org/html/Fuzzer.html

[16] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in 29th International Conference

on Software Engineering (ICSE 2007), Minneapolis, MN, USA, May

20-26, 2007. IEEE Computer Society, 2007, pp. 75–84. [Online].
Available: https://doi.org/10.1109/ICSE.2007.37

[17] A. Löscher and K. Sagonas, “Targeted Property-based Testing,” in
Proceedings of the 26th ACM SIGSOFT International Symposium on

Software Testing and Analysis, Santa Barbara, CA, USA, July 10 - 14,

2017, T. Bultan and K. Sen, Eds. ACM, 2017, pp. 46–56. [Online].
Available: https://doi.org/10.1145/3092703.3092711

[18] H. Goldstein, J. Hughes, L. Lampropoulos, and B. C. Pierce, “Do Judge
a Test by its Cover - Combining Combinatorial and Property-Based
Testing,” in Programming Languages and Systems - 30th European

Symposium on Programming, ESOP 2021, Held as Part of the

European Joint Conferences on Theory and Practice of Software,

ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,

Proceedings, ser. Lecture Notes in Computer Science, N. Yoshida,
Ed., vol. 12648. Springer, 2021, pp. 264–291. [Online]. Available:
https://doi.org/10.1007/978-3-030-72019-3 10

[19] G. Fink and M. Bishop, “Property-Based Testing: A New Approach to
Testing for Assurance,” SIGSOFT Softw. Eng. Notes, vol. 22, no. 4,
p. 74–80, jul 1997. [Online]. Available: https://doi.org/10.1145/263244.
263267

[20] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs,” in Proceedings of the Fifth

ACM SIGPLAN International Conference on Functional Programming

(ICFP ’00), Montreal, Canada, September 18-21, 2000, M. Odersky
and P. Wadler, Eds. ACM, 2000, pp. 268–279. [Online]. Available:
https://doi.org/10.1145/351240.351266

[21] “fast-check: Property based testing for JavaScript and TypeScript,” 2023,
https://dubzzz.github.io/fast-check.github.com/ (Accessed: 2023-01-26).

[22] Facebook, “Jest: Delightful JavaScript Testing,” 2023, https://jestjs.io/
(Accessed: 2023-01-26).

[23] B. Cook, “Formal Reasoning About the Security of Amazon Web
Services,” in Computer Aided Verification, H. Chockler and G. Weis-
senbacher, Eds. Cham: Springer International Publishing, 2018, pp. 38–
47. [Online]. Available: https://doi.org/10.1007/978-3-319-96145-3 3

[24] J. Backes, P. Bolignano, B. Cook, A. Gacek, K. S. Luckow, N. Rungta,
M. Schaef, C. Schlesinger, R. Tanash, C. Varming, and M. Whalen,
“One-Click Formal Methods,” IEEE Software, vol. 36, no. 6, pp. 61–65,
2019. [Online]. Available: https://doi.org/10.1109/MS.2019.2930609

[25] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu,
T. Kahsai, B. Kocik, E. Kotelnikov, J. Kukovec, S. McLaughlin,
J. Reed, N. Rungta, J. Sizemore, M. Stalzer, P. Srinivasan, P. Subotić,
C. Varming, and B. Whaley, “Reachability Analysis for AWS-Based
Networks,” in Computer Aided Verification, I. Dillig and S. Tasiran,
Eds. Cham: Springer International Publishing, 2019, pp. 231–241.
[Online]. Available: https://doi.org/10.1007/978-3-030-25543-5 14

[26] J. Backes, P. Bolignano, B. Cook, C. Dodge, A. Gacek, K. Luckow,
N. Rungta, O. Tkachuk, and C. Varming, “Semantic-based Automated
Reasoning for AWS Access Policies using SMT,” in 2018 Formal

Methods in Computer Aided Design (FMCAD), 2018, pp. 1–9. [Online].
Available: https://doi.org/10.23919/FMCAD.2018.8602994

[27] M. Bouchet, B. Cook, B. Cutler, A. Druzkina, A. Gacek, L. Hadarean,
R. Jhala, B. Marshall, D. Peebles, N. Rungta, C. Schlesinger,
C. Stephens, C. Varming, and A. Warfield, “Block Public Access: Trust
Safety Verification of Access Control Policies,” in Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2020, pp. 281–
–291. [Online]. Available: https://doi.org/10.1145/3368089.3409728

[28] L. M. de Moura and N. S. Bjørner, “Z3: An Efficient SMT Solver,”
in Tools and Algorithms for the Construction and Analysis of Systems,

14th International Conference, TACAS 2008, Held as Part of the Joint

European Conferences on Theory and Practice of Software, ETAPS

2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,
Eds., vol. 4963. Springer, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 24

[29] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu, “SAT
Modulo Monotonic Theories,” in Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, January 25-

30, 2015, Austin, Texas, USA, B. Bonet and S. Koenig, Eds.
AAAI Press, 2015, pp. 3702–3709. [Online]. Available: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9951

https://doi.org/10.1145/3540250.3558912
https://doi.org/10.1145/3468264.3468575
https://doi.org/10.1145/3054177
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1109/TSE.2021.3051492
https://doi.org/10.1016/j.infsof.2021.106593
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1145/3524842.3527964
https://doi.org/10.1145/3408897
https://doi.org/10.1007/s00450-019-00412-x
https://github.com/pulumi/pulumi
https://github.com/pulumi/pulumi
https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://www.terraform.io/cdktf
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1186/s42400-018-0002-y
https://www.fuzzingbook.org/html/Fuzzer.html
https://www.fuzzingbook.org/html/Fuzzer.html
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1007/978-3-030-72019-3_10
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/263244.263267
https://doi.org/10.1145/351240.351266
https://dubzzz.github.io/fast-check.github.com/
https://jestjs.io/
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1109/MS.2019.2930609
https://doi.org/10.1007/978-3-030-25543-5_14
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1145/3368089.3409728
https://doi.org/10.1007/978-3-540-78800-3_24
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9951
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9951

	Introduction
	Modern Infrastructur as Code Solutions and the Reliability Tooling Issue
	Quick and Thorough IaC Unit Testing
	Fuzz Testing with ProTI
	Property-based Testing with ProTI

	Automated Verification
	Conclusion
	References

