
Creed for Speed: Comprehensive Infrastructure as Code Testing
Accepted Talk Abstract at CONFLANG 2023, October 24, 2023, Cascais, Portugal

Daniel Sokolowski
University of St. Gallen
St. Gallen, Switzerland

daniel.sokolowski@unisg.ch

David Spielmann
University of St. Gallen
St. Gallen, Switzerland

david.spielmann@unisg.ch

Guido Salvaneschi
University of St. Gallen
St. Gallen, Switzerland

guido.salvaneschi@unisg.ch

ABSTRACT
With Programming Languages Infrastructure as Code (PL-IaC),
developers implement imperative IaC programs in one of many
general-purpose programming languages, e.g., TypeScript, Python,
or Go, to declaratively describe deployments. Using these languages
provides access to quality assurance techniques and tools developed
for traditional software; however, programmers routinely rely on
prohibitively slow integration testing—if they test at all. As a result,
even simple bugs are found late, tremendously slowing down the
development process.

To improve the velocity of PL-IaC development, we propose
ProTI, an automated unit testing approach that quickly tests PL-
IaC programs in many different configurations. ProTI mocks all
cloud resources, replacing them with pluggable oracles that vali-
date all resources’ configurations and a generator for realistic test
inputs. We implemented ProTI for Pulumi TypeScript with simple
generator and oracle plugins. Our experience of testing with ProTI
encourages the exploration of more sophisticated oracles and gen-
erators, leading to the early detection of more bugs. ProTI enables
programmers to rapidly prototype, explore, and plug in new oracles
and generators for efficient PL-IaC program testing.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software functional properties; Orchestration languages; •
Computer systems organization→ Cloud computing.

KEYWORDS
Infrastructure as Code, Property-based Testing, Fuzzing, DevOps

PL-IAC PROGRAM TESTING
With PL-IaC solutions, e.g., Pulumi [7] and AWS CDK [1], develop-
ers implement programs in a general-purpose programming lan-
guage and define resources by instantiating objects of the resources’
classes. For instance, Lines 1 to 5 in Figure 1 define an AWS S3
bucket object. All features of the programming language can be
used, and PL-IaC programs can have plenty of issues. Yet, the relia-
bility of PL-IaC programs is imperative. Faulty PL-IaC programs
can prevent the deployment, cause a non-functional setup, or yield
a functional setup with security issues. However, our survey of all
PL-IaC projects public on GitHub shows that less than 1% of the
Pulumi projects use unit testing. For AWS CDK, it is 38 %, but AWS
CDK only implements a limited form of PL-IaC, simplifying testing.

This work is licensed under a Creative Commons Attribution 4.0 International License.

1 const index = new aws.s3.BucketObject('index', {

2 bucket, key: 'index.html',

3 content: '<!DOCTYPE html>Hello world!'

4 contentType: 'text/html; charset=utf-8',

5 });

ProTI

Oracle Plugins
validate resource

target configuration T

Generator Plugin
generates resource

observed
configuration O

Resource
Definition

Automated Mock O

T

T
T

O

or

Input Con-
figuration I

Figure 1: Resource definition in a Pulumi TypeScript PL-IaC
program. ProTI mocks the resource, validates the resource’s
target configuration 𝑇 using pluggable oracles, and returns
suitable test inputs, i.e., a simulated observed resource con-
figuration 𝑂 that is provided by the generator plugin.

The absence of unit tests limits to integration testing, where
a single test takes at least tens of seconds and often minutes or
longer. Even simple bugs are spotted at high latency, hampering the
developers’ velocity. Still, developers seem to perceive unit testing
as impracticably effortful. Related work confirms that, generally,
testing IaC is high-effort and needs better techniques [6, 8].

AUTOMATING UNIT TESTINGWITH PROTI
We propose ProTI for PL-IaC program unit testing [9, 10], an ap-
proach bringing property-based testing [2, 5] and fuzzing [11] to
PL-IaC programs at low development effort. ProTI provides fast test
execution with high-quality assessment of the PL-IaC program.

ProTI automatically mocks all resource definitions, eliminating
the slow integration with cloud providers. Figure 1 shows ProTI’s
interaction with the PL-IaC program under test. The automated
mock receives the resources’ target configuration 𝑇 , derived from
the developer-specified input configuration 𝐼 . However, a naïve
mock would not provide insight. It would permit any resource con-
figuration, including invalid and faulty ones. Thus, ProTI uses oracle
plugins that implement an efficient model of the cloud providers
to validate each 𝑇 . Further, a naïve mock does not generate an ob-
served post-deployment configuration 𝑂 , which otherwise would
be returned by the cloud provider. 𝑂 is test input because it is ac-
cessible on the resource object and can be used in the remainder of
the PL-IaC program. ProTI uses a generator plugin that efficiently
transforms each 𝑇 into an 𝑂 . At this level of automation, ProTI can

https://orcid.org/0000-0003-2911-8304
https://orcid.org/0009-0004-1715-2059
https://orcid.org/0000-0002-9324-8894
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode


Daniel Sokolowski, David Spielmann, and Guido Salvaneschi

quickly run the PL-IaC program hundreds of times, steered by a
generator that provides valid configurations that are ideally in an
order that tests bug-triggering configurations as early as possible.

IMPLEMENTATION
We implemented ProTI for Pulumi TypeScript as an extension of
Jest [4] using fast-check [3]. Initial oracle and generator plugins are
based on Pulumi package schemas, checking the type-level validity
of resource configurations and generating type-compliant observed
configurations. Prototyping and using new oracle and generator
plugins is simple and facilitates the exploration of new strategies.

REFERENCES
[1] Amazon Web Services. 2023. AWS Cloud Development Kit. https://aws.amazon.

com/cdk/ (Accessed: 2022-07-12).
[2] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for

Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming (ICFP ’00). Association for
Computing Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/
351240.351266

[3] Nicolas Dubien. 2022. fast-check: Property based testing framework for JavaScrip-
t/TypeScript. https://github.com/dubzzz/fast-check (Accessed: 2022-07-12).

[4] Facebook. 2023. Jest: Delightful JavaScript Testing. https://jestjs.io/ (Accessed:
2023-01-29).

[5] George Fink and Matt Bishop. 1997. Property-based testing: a new approach
to testing for assurance. ACM SIGSOFT Softw. Eng. Notes 22, 4 (1997), 74–80.
https://doi.org/10.1145/263244.263267

[6] M. Guerriero, M. Garriga, D. A. Tamburri, and F. Palomba. 2019. Adoption, Sup-
port, and Challenges of Infrastructure-as-Code: Insights from Industry. In 2019
IEEE International Conference on Software Maintenance and Evolution (ICSME).
580–589. https://doi.org/10.1109/ICSME.2019.00092

[7] Pulumi. 2022. Pulumi: Universal Infrastructure as Code. https://github.com/
pulumi/pulumi (Accessed: 2022-07-12).

[8] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2019. A system-
atic mapping study of infrastructure as code research. Information and Software
Technology 108 (2019), 65 – 77. https://doi.org/10.1016/j.infsof.2018.12.004

[9] Daniel Sokolowski and Guido Salvaneschi. 2023. Towards Reliable Infrastructure
as Code. In 20th International Conference on Software Architecture, ICSA 2023 -
Companion, L’Aquila, Italy, March 13-17, 2023. IEEE, 318–321. https://doi.org/10.
1109/ICSA-C57050.2023.00072

[10] David Spielmann, Daniel Sokolowski, and Guido Salvaneschi. 2023. Extensible
Testing for Infrastructure as Code. In Companion Proceedings of the 2023 ACM
SIGPLAN International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion ’23). https://doi.org/
10.1145/3618305.3623607

[11] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2021. The Fuzzing Book. CISPAHelmholtz Center for Information Security.
https://www.fuzzingbook.org/ Retrieved 2021-10-26 21:30:20+08:00.

https://aws.amazon.com/cdk/
https://aws.amazon.com/cdk/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://github.com/dubzzz/fast-check
https://jestjs.io/
https://doi.org/10.1145/263244.263267
https://doi.org/10.1109/ICSME.2019.00092
https://github.com/pulumi/pulumi
https://github.com/pulumi/pulumi
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1109/ICSA-C57050.2023.00072
https://doi.org/10.1109/ICSA-C57050.2023.00072
https://doi.org/10.1145/3618305.3623607
https://doi.org/10.1145/3618305.3623607
https://www.fuzzingbook.org/

	Abstract
	References

